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Extrapolation description of limiting interpolation spaces

Sergey Astashkin

Samara University, Russia

The main aim of this talk is to give a complete characterization of limiting real
interpolation spaces using extrapolation theory. It hinges upon the boundedness of
some simple operators (e.g. f 7→ f(t2)/t or f 7→ f(t1/2) acting on the underlying
lattices that are used to control the K-functionals. Reiteration formulae, extending
Holmstedts classical reiteration theorem to limiting spaces, are also proved and
characterized in this fashion. The resulting theory gives a unified roof to a large
body of literature that, using ad-hoc methods, had covered only special cases of
the results obtained here. We will concern also with some applications to Matsaev
ideals and Grand Lebesgue spaces.

This is a joint work with K. Lykov and M. Milman [1].

References
[1] Sergey V. Astashkin, Konstantin V. Lykov, and Mario Milman, Limiting interpolation spaces via extrapolation,

Preprint of 53 pages submitted on 28 March 2018 at arXiv:1803.10659.
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Convex cones and ordered Banach spaces

Richard Becker

IMJ, IMJ, Paris VI, Paris, France

The theory of ordered Banach spaces is very general and many problems of
analysis may be viewed as problems of this theory by introducing some convex
cone which defines an ordering. On the other hand, if B is a Banach space, any
convex cone X ⊂ B defines an ordering on B. If B = X −X then X is said to be
generating. If 0 ≤ x ≤ y implies that ‖x‖ ≤ C‖y‖ for some constant C, then X
is said to be normal (roughly speaking, X is sharp). If the ordering gives a lattice
structure on B, and if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖, then B is a Banach lattice.

Basic results were obtained by G. Krein (1940), V.L. Klee (1955) and T. Ando
(1962). After that, the topic was rather dormant during 30 years. But, after this
period, new results were obtained.

To every convex cone X ⊂ B we associate an index i(X) which is a generalization
of the cotype index for cones (if X = B then i(B) is the cotype index of B). This
index is involved in various topics. For example:

If T is a linear operator from B to a Banach space F which is p-summing on the
cone X, with 1 < p < i(X)′, where i(X)′ is the conjugate number of i(X), then T
is also 1-summing on X.

If T is a positive linear operator from a C(K) space to B then T is r-summing
for any r > i(X).

If X is a normal cone, with i(X) > 1, then i(X) enables us to study whether B
contains uniform copies of `rn embedded in B, whose basic vectors are contained in
X. Namely, i(X) is the maximun of such r.

When B is a Hilbert space then i(X) = 1 or i(X) = 2.
Finally, some applications are given within the framework of tensor products.
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Duality for logarithmic interpolation spaces and applications to Besov
spaces

Fernando Cobos

Universidad Complutense de Madrid, Spain

Some applications of the ideas of real interpolation have required to consider
logarithmic perturbations of the real method (A0, A1)θ,q,A, with

‖a‖(A0,A1)θ,q,A =
(∫ ∞

0

(
t−θ`(t)AK(t, a)

)q dt
t

)1/q
,

where 0 < q ≤ ∞,A = (α0, α∞) ∈ R2, `(t) = 1 + | log t|, `(t)A = `(t)α0 if 0 < t ≤ 1,
`(t)A = `(t)α∞ if 1 < t < ∞, and now not only 0 < θ < 1 but also θ can take the
values 0 and 1.

When 0 < θ < 1 the theory of spaces (A0, A1)θ,q,A is very similar to the theory
of the real method. But if θ = 1 or θ = 0 there are significant differences in the
description by means of the J-functional, duality and other subjects.

We will describe duality for these spaces when θ = 1 or 0, paying special attention
to the case 0 < q < 1. We will also apply the abstract results to compute the dual
space of Besov spaces of logarithmic smoothness.

The talk is based on results of joint papers with A. Segurado [3], O. Domínguez
[2] and B.F. Besoy [1].

References
[1] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applications, preprint.
[2] F. Cobos and O. Domínguez, On Besov spaces of logarithmic smoothness and Lipschitz spaces, J. Math. Anal.

Appl. 425 (2015) 71–84.
[3] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J-functional and

applications, J. Funct. Anal. 268 (2015) 2906–2945.

E-mail: cobos@mat.ucm.es
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Gâteaux differentiability of w∗-lower semicontinuous convex functions
in Banach spaces and some application

Yunan Cui

Department of Mathematics, Harbin University of Science and Technology, Harbin, 150080, China

In this talk, some necessary and sufficient conditions for Gâteaux differentiabil-
ity of w∗-lower semicontinuous convex functions on X∗∗ with values in R will be
given. Moreover, we will also prove that if X∗∗ is separable and f is a w∗-lower
semicontinuous convex function in X∗∗, then there exists a dense Gδ subset G of X
such that f is Gâteaux differentiable at each point of G. Using this general result,
some necessary and sufficient conditions for ball-covering property of X∗∗ will be
given.

E-mail: yunan cui@aliyun.com
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Bohr’s phenomenon for functions on the Boolean cube

Andreas Defant

University of Oldenburg, Germany

We study the asymptotic decay of the Fourier spectrum of real functions on the
Boolean cube {−1, 1}N in the spirit of Bohr’s phenomenon from complex analysis.
Every such function admits a canonical representation through its Fourier-Walsh
expansion f(x) =

∑
S⊂{1,...,N} f̂(S)xS , where xS =

∏
k∈S xk. Given a class F

of functions on the Boolean cube {−1, 1}N , the Boolean radius of F is defined
to be the largest ρ ≥ 0 such that

∑
S |f̂(S)|ρ|S| ≤ ‖f‖∞ for every f ∈ F . We

indicate the precise asymptotic behaviour of the Boolean radius of several natural
subclasses, as e.g. the class of all real functions on {−1, 1}N , the subclass made
of all homogeneous functions or certain threshold functions. Compared with the
classical complex situation subtle differences as well as striking parallels occur.
Joint work with Mieczysław Mastyło and Antonio Pérez Hernández.

E-mail: defant@mathematik.uni-oldenburg.de
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An alternative to Plancherel’s criterion for bilinear operators

Loukas Grafakos

University of Missouri Columbia, USA

A well known criterion, based on Placherel’s identity, says that a convolution
operator

Lm(f)(x) = (f ∗K)(x) =

∫
Rn
f̂(ξ)K̂(ξ)e2πix·ξ dξ

is bounded from L2(Rn) to itself if and only if the corresponding multiplier K̂, i.e.
the Fourier transform of the kernel K, is an L∞ function. We obtain a similar
characterization for bilinear translation-invariant operators of the form

Tm(f, g)(x) =

∫
Rn

∫
Rn
f̂(ξ)ĝ(η)m(ξ, η)e2πix·(ξ+η) dξ dη

that are bounded from L2(Rn) × L2(Rn) to L1(Rn). Our study encompasses only
smooth multipliers m with bounded derivatives and the characterization we obtain
is expressed in terms of the Lebesgue integrability of the multiplier. This is joint
work with Danqing He and Lenka Slav́ıková.

E-mail: grafakosl@missouri.edu
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Morrey sequence spaces

Dorothee D. Haroske

University of Rostock, Germany

Morrey (function) spaces and, in particular, smoothness spaces of Besov-Morrey
or Triebel-Lizorkin-Morrey type were studied in recent years quite intensively and
systematically. Decomposition methods like atomic or wavelet characterisations
require suitably adapted sequence spaces. This has been done to some extent
already. However, based on some discussion at the conference ‘Banach Spaces and
Operator Theory with Applications’ in Poznań in July 2017 we found that Morrey
sequence spaces mu,p = mu,p(Zd), 0 < p ≤ u < ∞, have been considered almost
nowhere. They are defined as natural generalisations of `p = `p(Zd) via

mu,p =

{
λ = {λk}k∈Zd ⊂ C :

‖λ|mu,p‖ = sup
j∈N0;m∈Zd

|Q−j,m|
1
u−

1
p

( ∑
k:Q0,k⊂Q−j,m

|λk|p
) 1
p

<∞
}
,

where Qi,m are dyadic cubes of side length 2−i, i ∈ Z, m ∈ Zd. Clearly, mp,p = `p.

We consider some basic features, embedding properties, the pre-dual, a corre-
sponding version of Pitt’s compactness theorem, and can further characterise the
compactness of embeddings of related finite-dimensional spaces.

This is joint work with Leszek Skrzypczak (Poznań).

E-mail: dorothee.haroske@uni-rostock.de
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Compactness and embedding theorems for Sobolev type spaces defined
on metric spaces

Agnieszka Kałamajska

University of Warsaw, Warsaw, Poland

Assume that X = (X, d) is a complete metric space equipped with a metric
d and two positive complete Borel measures µ and ν. We discuss compactness
of embedding from Sobolev - type space defined on X and subordinated to the
measure µ, possibly of fractional type, into Lq(X; ν), where 1 ≤ p, q < ∞. The
involved measures need not be doubling. Our results are formulated using covering
families and local two weighted Poincaré type inequalities involving measures µ and
ν, which are satisfied on certain covering sets Ei(r) and E′i(r):(∫

Ei(r)

|u− aEi(u)|qdν

)1/q

≤ C(r)

(∫
Ei(r)

Gr(u)pdµ

)1/p

whenever Gr(u) belongs to Lp(X,µ).
We show how to construct such suitable coverings, recovering several classical

embedding and trace embedding theorems on domains and fractal sets in Rn, in the
weighted and nonweighted setting. Results are obtained together with Jana Björn.

References
[1] Jana Björn, Agnieszka Kalamajska, Compactness and embedding theorems for Sobolev type spaces defined

on metric spaces, in preparation
[2] Piotr Hajlasz, Pekka Koskela, Sobolev met Poincaré Mem. Amer. Math. Soc. 145 (2000)
[3] Agnieszka Kalamajska, On compactness of embedding for Sobolev spaces defined on metric spaces, Ann.

Acad. Sci. Fenn. Math. 24 (1999)

E-mail: Agnieszka.Kalamajska@mimuw.edu.pl
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Abstract Lorentz spaces and Köthe duality

Anna Kamińska

Department of Mathematical Sciences, The University of Memphis, USA

Given a symmetric Banach function space E and a decreasing positive weight
w on I = (0, a), 0 < a ≤ ∞, the generalized Lorentz space ΛE,w is defined as the
symmetrization of the canonical copy Ew of E on the measure space associated
with the weight. A class of functions ME,w is similarly defined in the spirit of
Marcinkiewicz spaces as the symmetrization of the space wEw. Differently as the
Lorentz space, which is a Banach function space, the class ME,w does not need
to be even a linear space. Let also QE,w be the smallest fully symmetric Banach
function space containing ME,w. An investigation of the Köthe duality of these
classes is developed that is parallel to preceding works on Orlicz-Lorentz spaces.
The Köthe dual of the class ME,w is identified as the Lorentz space ΛE′,w, while
the Köthe dual of ΛE,w is QE′,w. Several characterizations of QE,w are obtained,
one of them states that a function belongs to QE,w if and only if its level function
in Halperin’s sense with respect to w, belongs to ME,w. These results are applied
to a number of concrete Banach function spaces. In particular a new description of
the Köthe dual space is provided for the Orlicz-Lorentz space.

Co-author:
Yves Raynaud, Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS
/ UPMC (Univ.Paris 06) / Univ. Paris-Diderot, France, yves.raynaud@upmc.fr

E-mail: kaminska@memphis.edu
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On the separable quotient problem for Banach spaces and spaces C(X)
of continuous functions

Jerzy Kąkol

Faculty of Mathematics and Computer Science, A. Mickiewicz University, Poznan, Poland

One of the famous unsolved problems of functional analysis asks (Mazur’s prob-
lem (1932)) if every (infinite-dimensional) Banach space E has an (infinite-dimen-
sional) separable quotient. Many concrete Banach spaces are known to have sepa-
rable quotient, for example, reflexive Banach spaces, or even weakly compactly gen-
erated Banach spaces. Quite recently Agriros, Dodos and Kanellopoulos, proved
that every dual Banach space has a separable quotient. On the other hand, V.
Rosenthal (independently Lacey) showed that all Banach space C(X) of contin-
uous (real-valued) functions on X have a separable quotient. We provide several
useful methods to examine which Banach spaces admit a separable quotient. The
talk gathers also quite new results concerning the separable quotient problem for
spaces Cp(X) of continuous functions endowed with the pointwise topology. A
connection with Efimov compact spaces X will be also discussed.



21

Optimal spaces for Navier-Stokes equations and other PDEs

Pierre-Gilles Lemarié-Rieusset

LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France

During the last twenty years, a lot of work has been devoted to the study of
NavierStokes equations on the whole space with help of a large variety of function
spaces derived from harmonic analysis or interpolation theory. Besov spaces in the
late 90’s (or BesovMorrey spaces), BMO in the early 2000’s and more recently
Morrey spaces or singular multiplierr spaces. Many of them have been claimed as
being the largest space where to derive existence, uniqueness or regularity theorems.
Many of them have turned out not to be as optimal as initially hoped. I shall review
some of those spaces from triumph to decay.

E-mail: pierregilles.lemarierieusset@univ-evry.fr
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History of the theory of interpolation of operators: 1910–1966

Lech Maligranda

Lule̊a University of Technology, SE-971 87 Lule̊a, Sweden

The talk will contain the following parts:
1. Why years from 1910 to 1966 ?;
2. Lp spaces (1910) and Banach spaces (1922);
3. The Riesz–Thorin interpolation theorem (1926, 1939); Why it was and still is

useful ?;
4. Banach’s interpolation problem 87 from The Scottish Book;
5. Orlicz spaces (1932, 1936) and three interpolation theorems of Orlicz (1934,

1954, 1954);
6. The Marcinkiewicz interpolation theorem (1939). Importance of Zygmund (1956,

1960);
7. Generalizations of the Marcinkiewicz interpolation theorem. Lorentz and Marcinkiewicz

spaces;
8. The Calderón–Mitjagin interpolation theorem (1965, 1966). Symmetric spaces

= rearrangement invariant spaces (1964);
9. The Lions–Peetre real method of interpolation for general Banach spaces = K-

method of interpolation (1964). Calderón couples (1966). Quasi-Banach spaces;
10. The Calderón complex methods of interpolation for Banach spaces (1964). The

Calderón–Lozanovskii construction for Banach ideal spaces (= Banach lattices).
Of course, I will show many photos. The talk is based on my publications.

References
[1] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Univ. of Campinas, Campinas SP, Brazil

1989, iii+206 pp. (ISSN 0103-5258; 5)
[2] L. Maligranda, Some remarks on Orlicz’s interpolation theorem, Studia Math. 95 (1989), no. 1, 43–58.
[3] L. Maligranda, Józef Marcinkiewicz (1910–1940) – on the centenary of his birth (Marcinkiewicz

Centenary Volume,), Banach Center Publ. 95 (2011), 133–234. “Open access” at:
http://journals.impan.gov.pl/bc/PDF/bc95-0-10.pdf

[4] L. Maligranda, Marcinkiewicz interpolation theorem and Marcinkiewicz spaces, Wiad. Mat. 48 (2012), nr 2,
157–171.

[5] L. Maligranda, Osia̧gniȩcia polskich matematyków w teorii interpolacji operatorów: 1910–1960 [Achievements of
Polish mathematicians in the theory of interpolation of operators (1910–1960)], Wiad. Mat. 51 (2015), no. 2,
239–281 (in Polish).

E-mail: lech.maligranda@ltu.se
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Some results on the Fixed Point Property

José Mendoza

Universidad Complutense de Madrid, Spain

The aim of this talk is to survey some of the most important results related to the
fixed point property (FPP) on Banach spaces, and then focus on one open problem
on the subject: do all renormings of c0 fail the (FPP)? Working on this problem,
J. M. Álvaro, P. Cembranos and the speaker have found a sufficient condition for a
renorming of c0 to fail the FPP which is more general than the previously known
ones [J. Math. Anal. Appl. 454 (2017), 1106–1113]. This condition as well as some
related facts will be analyzed.

E-mail: Jose Mendoza@mat.ucm.es



24

Fixed point property and direct sums of Banach spaces

Stanisław Prus

Maria Curie-Skłodowska University, Lublin, Poland

We consider general direct sums of the form
(∑

i∈I Xi

)
E

, where {Xi}i∈I is a fam-
ily of Banach spaces and E is a Banach lattice of functions on the set I. Properties
of such sums depend on the lattice E, so we discuss the concepts of uniform mono-
tonicity and order uniform smoothness of Banach lattices and moduli corresponding
to these properties.

Next we give an overview of some recent results on the problem under what as-
sumptions direct sums have the fixed point property for a given class of mappings.
We focus mainly on the class of nonexpansive maps, i.e., the maps satisfying the
Lipschitz condition with constant 1. It is known that many geometric properties
imply the fixed point property for nonexpansive mappings. The list of such prop-
erties includes uniform nonsquareness, Opial property and Garćıa-Falset condition.
We discuss coefficients and moduli corresponding to these properties and show how
their values for the direct sum

(∑
i∈I Xi

)
E

can be estimated in terms of the values
for the spaces Xi.

References
[1] A. Betiuk-Pilarska, S. Prus, Uniform nonsquareness of direct sums of Banach spaces, Topol. Methods Nonlinear

Anal. 34 (2009), 181–186.
[2] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125–143.
[3] J.-D. Hardtke, WORTH property, Garćıa-Falset coefficient and Opial property of infinite sums, Comment. Math.
55 (2015), 23–44.

[4] J. Markowicz, S. Prus, James constant, Garćıa-Falset coefficient and uniform Opial property in direct sums of
Banach spaces, J. Nonlinear Convex Anal. 17 (11) (2016), 2237–2253.

[5] J. Markowicz, S. Prus, Properties of modulus of monotonicity and Opial property in direct sums, Ann. Univ.
Mariae Curie-Skłodowska Sect. A 71 (2) (2017), 69–77.

[6] A. Wiśnicki, On the fixed points of nonexpansive mappings in direct sums of Banach spaces, Studia Math. 207
(1) (2011), 75–84.

[7] A. Wiśnicki, The fixed point property in direct sums and modulus R(a,X), Bull. Austral. Math. Soc. 89 (2014),
79–91.

E-mail: stanislaw.prus@umcs.lublin.pl
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Integration with respect to vector capacities in Information Sciences

Enrique A. Sánchez Pérez

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València,

Valencia, Spain

Information measures is an outstanding topic with applications in several re-
search fields, including Computer Science, Econometry and Information Science.
Some of these measures are actually defined as non-additive integrals of functions
with respect to (non-additive) vector valued capacities. Thus, in this talk we ex-
plain several open research lines in which abstract integration techniques play a
prominent role. In particular, we will briefly present the following topics:

1) Choquet integration with respect to vector valued capacities and modeling of
information measures. Models for economical control processes.

2) Information indexes associated to non-additive vector valued integrals: the
Bochner norm, the Pettis norm, the norm of the integral.

3) Applications: Stability of multiple impact indexes from the point of view
of integration with respect to non-additive set functions. Probabilistic models for
prediction of publication behavior and impact factors.

We will also give an overview of the integration theory underpinning these tech-
niques, focusing on the structure of the spaces of integrable functions involved.
The results presented in this talk have been obtained in collaboration with J.M.

Calabuig, O. Delgado, A. Ferrer-Sapena and R. Szwedek.

References
[1] G. Beliakov, and S. James, S. Citation-based journal ranks: the use of fuzzy measures. Fuzzy Sets and Systems,
167 (2011), 101–119.

[2] J.M. Calabuig, A. Ferrer-Sapena, and E. A. Sánchez-Pérez, Vector-valued impact measures and generation of
specific indexes for research assessment, Scientometrics 108,3 (2016), 1425–1443.

[3] O. Delgado and E.A. Sánchez Pérez, Choquet type L1-spaces of a vector capacity, Fuzzy Sets and Systems 327
(2017), 98–122.

[4] A. Fernández, F. Mayoral and F. Naranjo, Bartle-Dunford-Schwartz integral versus Bochner, Pettis and Dunford
integrals, J. Convex Anal. 20 (2013), 339–353.

[5] A. Ferrer-Sapena, E.A. Sánchez-Pérez, L.M. González, F., Peset, and R. Aleixandre-Benavent, Mathematical
properties of weighted impact factors based on measures of prestige of the citing journals. Scientometrics, 105(3),
(2015), 2089–2108.

[6] M. Gagolewski, and R. Mesiar, Monotone measures and universal integrals in a uniform framework for the
scientific impact assessment problem. Information Sciences, 263, (2014), 166–174.

[7] J. Kawabe,The Choquet integral in Riesz space. Fuzzy Sets and Systems 159, (2008), 629–645.
[8] E. Pap, Pseudo-Additive Measures and their Applications, Ch.35 in: Handbook of measure Theory (Vol.II),

Ch.35, Elsevier, Amsterdam, 2002.
[9] D. Ruan, Choquet integral based aggregation approach to software development risk assessment, Information

Sciences 180(3) (2010), 441–451.
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Existence of solutions for Kirchhoff type problems in
Musielak-Orlicz-Sobolev spaces

Zhongrui Shi

Shanghai University, China

In this paper, we investigate a class of Kirchhoff type problem with Neumann boundary
data in Musielak-Orlicz-Sobolev spaces. Using the Musielak-Orlicz theory and Mountain
pass theorem, we establish the existence of nontrivial weak solutions which generalizes the
existing results.
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Function spaces with dominating mixed smoothness

Hans Triebel

University of Jena, Germany

Sobolev spaces SrpW (Rn) with dominating mixed smoothness normed by

‖SrpW (Rn)‖ =
∑
α∈Nn0 ,

0≤αj≤r

‖Dαf |Lp(Rn)‖

r ∈ N, 1 < p <∞ and their Besov counterparts Srp,qB(Rn), r > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞
have been introduced by S.M. Nikol’skij in the early 1960s. They, and their counterparts
SrpW (Q), Srp,qB(Q) on the cubes Q = (0, 1)n proved to be very effective especially in
connection with approximation, sampling, numerical integration etc. One may ask of
whether these advantages (compared with their isotropic counterparts) can be preserved
when switching from Q to arbitrary (bounded) domains. But for this purpose one needs
first some properties for the related spaces in Rn which are, so far, not available and
which will discussed in the talk: (smooth and non–smooth) atoms, pointwise multipliers,
homogeneity at the small, localization, fibre-preserving diffeomorphisms.

E-mail: hans.triebel@uni-jena.de
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On the Auerbach-Mazur-Ulam problem

Michał Wojciechowski

IMPAN, Warszawa, Poland

In 1935 Auerbach, Mazur and Ulam proved that any centrally symmetric body in R3

with all two dimensional central sections affinely equivalent to each other is an ellipsoid.
This theorem was later generalized to all odd dimensions by Gromov. The proofs are
based on the algebraic topology - nonexistence of a non-vanishing vector field tangent to
the sphere. This is the reason why in even dimensions the problem is still open - this
argument does not work there.

We present a new approach to the problem, that does not use the homological properties
of sphere. Under some mild smoothness condition we prove the theorem in 3D using
only differential properties of the body. We hope that this approach will work in even
dimensions.

Joint work with Bartek Zawalski.
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Reduced basis method, Data assimilation and Generalized Sampling

Przemysław Wojtaszczyk

Institute of Mathematics, Polish Academy of Sciences, Poland

1. Reduced basis method. Let F ⊂ Rd be a compact set e.g. F = [0, 1]d with
d = 50 and let

(1) Dµf = g µ ∈ E

be a family of uniformly elliptic PDE’s (or some other equations). For a given µ ∈ F
solving (1) is time consuming.

We want to prepare ourselves to do it fast for given µ. Idea of reduced basis method:
(end of XX-century) We solve (1) for µ1, . . . , µn to get fµ1 , . . . , fµn and for given µ we
approximate the solution

fµ ∼
n∑
j=1

ajfµj .

How to find good basis elements?
2. Greedy selection ( Maday-Patera-Turinici, 2002)
Let K =: {fµ : µ ∈ ∆} be a compact subset of certain Banach space X or a Hilbert

space H.
We define µ1, . . . µn as follows (fj = fµj )

(1) f1 = argmax{‖f‖ : f ∈ K}
(2) Given f1, . . . , fn we define Vn = span {f1, . . . , fn} and put fn+1 = argmax{dist (f,En) :

f ∈ K}
We define σn(K) = supf∈K dist (f, Vn).
Thus we know that

(2) K ⊂
⋂
j=1

{f ∈ X : dist(f, Vn) ≤ σn} =: Kgreedy.

This is a classical constructive approximation theory setup: f is smooth if and only if it
can be approximated by polynomials, splines, wavelets etc. with certain accuracy.

3. Data assimilation Now suppose we do not know µ but have some data about the
solution f ∈ K, say they are linear functionals

(3) l1, . . . , lm ∈ X ∗ and we have lj(f)

This set is generally intractable so we look at the hopefully easier problem: Find f in
Kgreedy satisfying (3). Usually we do it step by step i.e. we work with the problem
X is a Banach space and V1 ⊂ V2 ⊂ · · · ⊂ X are finite dimensional subspaces with
dimVj = j and

⋃
j Vj dense in X . l1, l2, · · · ⊂ X ∗ are linear functionals, we define Mm(x) =

(lj(x))mj=1 ∈ Rm. Given n and m we want to find a map Φ : Rm → X such that the element
Φ(~a) =: fn,m ∈ X and dist(fn,m, Vn) is small and lj(fn,m) = αj where ~a = (α1, . . . , αm).
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4. Generalized Sampling X is a Banach space and V1 ⊂ V2 ⊂ · · · ⊂ X are finite
dimensional subspaces with dimVj = j and

⋃
j Vj dense in X . l1, l2, · · · ⊂ X ∗ are linear

functionals, we define Mm(x) = (lj(x))mj=1 ∈ Rm. For given n and m we want to find a
map Φ : Rm → X such that for any x ∈ X the element Φ(Mm(x)) =: fn,m ∈ Vn and
‖x− fn,m‖X is comparable with dist(x, Vn).

Clearly the words ”small” and ”comparable” must be made precise.
Those two problems are very similar and closely related. In [2, 3] we worked out the

general approach to those problems. Generalized sampling in case of the Hilbert spaces
was extensively studied by Ben Adcock with coauthors, see e.g. [1] and our approach
generalises their arguments to the setting of arbitrary Banach space.

In the talk I will describe this scheme and explain some of its applications for questions
of classical approximation theory.
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Pairs of spaces having the Bishop-Phelps-Bollobás property for operators
when the domain is `n∞

Maŕia D. Acosta

University of Granada, Spain

Bishop-Phelps Theorem states that the set of norm attaining functionals is dense in
the (topological) dual of a Banach space. Bollobás showed a “quantitative” version of that
result called nowadays the Bishop-Phelps-Bollobás Theorem. He proved that every pair
of elements (x0, x

∗
0) in SX × SX∗ such that x∗0(x0) ∼ 1 can be approximated by another

pair (x, x∗) in SX × SX∗ such that x∗(x) = 1. In 2008 it was initiated the study of
versions of such result for operators [1]. A pair of Banach spaces (X,Y ) has the Bishop-
Phelps-Bollobás property for operators (BPBp for short) whenever every pair (x0, S0) in
SX × SL(X,Y ) such that ‖S0(x0)‖ ∼ 1 can be approximated by another pair (x1, T ) in
SX × SL(X,Y ) such that ‖T (x1)‖ = 1. Here we denote by L(X,Y ) the space of bounded
and linear operators from X to Y . It is known that the previous property is non trivial.
It is an open problem whether or not the pair (c0, `1) has the BPBp in the real case. It
is known that the pair (`3∞, `1) has that property. We provided a characterization of the
Banach spaces Y such that (`4∞, Y ) has the BPBp. More recently we extended such result
to the case where the domain is `n∞, where n is any positive integer. As a consequence,
we provide examples of classes of spaces Y such that the pair (`n∞, Y ) has the BPBp for
operators.

The results are part of two joint works with J.L. Dávila and M.
Soleimani-Mourchehkhorti.
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Variable exponent Besov-Morrey spaces

Alexandre Almeida

University of Aveiro, Portugal

In this talk we introduce Besov-Morrey spaces with all exponents variable and discuss
various fundamental properties, including characterizations in terms of maximal functions,
atoms and molecules. These new spaces are introduced from appropriate variable expo-
nent mixed Morrey-sequence spaces which in turn are defined within the framework of
semimodular spaces.
This is based on joint work with A. Caetano.

E-mail: jaralmeida@ua.pt
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Schauder theory for parabolic equations in variable Hölder spaces

Piotr Michał Bies

Department of Mathematics and Information Sciences, Warsaw University of Technology, Poland

I shall present my results in Schauder theory for parabolic equations for parabolic
equations during the talk. I will show main Theorem in general form. I will give main
steps of the proof and say something about difficulties, which appears in work with variable
exponent. I will tell also, why a study of parabolic equations is different from research of
elliptic equations. The elliptic equations in variable Hölder spaces were considered by me
in work [1].
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Averaging operators on decreasing or positive functions: equivalence and
optimal bounds

Santiago Boza

Universitat Politècnica de Catalunya, Barcelona, Spain

In this talk we will deal with the study of the optimal bounds for the Hardy operator S
minus the identity, as well as S and its dual operator S*, for the cases of decreasing, positive
or general functions, on the full range 1 ≤ p ≤ ∞. In fact, these two kinds of inequalities
are shown to be equivalent for the appropriate cone of functions. For 1 ≤ p ≤ 2, we prove
that these estimates are the same, but for 2 < p <∞ they exhibit a completely different
behavior. This is a joint work with Javier Soria.

E-mail: santiago.boza@upc.edu
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Some function spaces questions arising in problems of diffraction by planar
screens

António Caetano

University of Aveiro, Portugal

Recently [1], S. Chandler-Wilde and D. Hewett have proposed a boundary integral
equation approach for studying scattering problems involving fractal structures, in par-
ticular planar screens which are fractal or have a fractal boundary. This led them to
consider, e.g., subspaces of Bessel-potential spaces like

Hs
F := {u ∈ Hs(Rn) : suppu ⊂ F}

when F is a closed subset of Rn and

H̃s(Ω) := D(Ω)
Hs(Rn)

when Ω is an open subset of Rn and, together with A. Moiola, study some properties of
such spaces.

As examples of questions of interest in this regard we have the following:

• For which s ∈ R and Ω open do we have H̃s(Ω) = Hs
Ω

?
• For which s ∈ R and K compact with empty interior but with positive Lebesgue

measure do we have Hs
K 6= {0}? Or Hs

K = {0}?
• When is Ht

F dense in Hs
F for F closed and t > s?

I shall report on this and also on some answers to which we arrived during our recent
collaboration project.
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Continuity and compactness of the composition operator between distinct
Orlicz spaces

Tadeusz Chawziuk

Adam Mickiewicz University, Pozna„, Poland

We consider the composition operator between distinct Orlicz spaces, ie generated
by different Young functions over different measure spaces. We state necessary and/or
sufficient conditions for the continuity and compactness of this operator under various
conditions on the underlying measure spaces, the transformation inducing the composi-
tion operator, and/or the generating Young functions. Compactness is tackled through
the concept of uniform absolute continuity. The function and sequence case are treated
separately.

E-mail: tchawz@gmail.com
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Disjoint hypercyclic operators on groups

Chung-Chuan Chen

National Taichung University of Education, Taiwan

About one decade ago, Bernal-Gonález, Bès and Peris introduced the new notion of
disjoint hypercyclicity respectively. Since then, disjoint hypercyclicity was studied inten-
sively. In this talk, we will recall this new notion by studying some classic examples of
weighted shifts on the integer group, first. Then we subsume these results by providing
the characterization for weighted translation operators on locally compact groups to be
disjoint hypercyclic.

E-mail: chungchuan@mail.ntcu.edu.tw



41

Relationships between the best dominated approximation in the sense of the
Hardy-Littlewood-Pólya relation and strict K-monotonicity and K-order

continuity in symmetric spaces.

Maciej Ciesielski

Poznań University of Technology, Poznań, Poland

Let L0 be a set of all (equivalence classes of) extended real valued m-measurable
functions on I = [0, α), where 0 < α ≤ ∞. For any x ∈ L0 we denote x∗ (t) =

inf {λ > 0 : m(|x| > λ) ≤ t}, x∗∗(t) = 1
t

∫ t
0
x∗(s)ds for t > 0. The Hardy-Littlewood-Pólya

relation ≺ is given for any x, y in L1 + L∞ by

x ≺ y ⇔ x∗∗(t) ≤ y∗∗(t) for all t > 0.

Let (E, ‖·‖E) be a symmetric space and let Y ⊂ X be a nonempty subset. For x ∈ X
denote

PY (x) = {y ∈ Y : ‖x− y‖ = dist(x, Y )}.
Any element y ∈ PY (x) is called a best approximant in Y to x. A nonempty set Y ⊂ X
is called proximinal or set of existence if PY (x) 6= ∅ for any x ∈ X. A nonempty set Y is
said to be a Chebyshev set if it is proximinal and PY (x) is a singleton for any x ∈ E.

A symmetric space E is said to be strictly K-monotone (shortly E ∈ (SKM)) if for
any x, y ∈ E such that x∗ 6= y∗, x ≺ y we have ‖x‖E < ‖y‖E . A point x ∈ E is called
a point of K-order continuity of E if for any (xn) ⊂ E such that xn ≺ x and x∗n → 0
a.e. we have ‖xn‖E → 0. A symmetric space E is called K-order continuous (shortly
E ∈ (KOC)) if every element x of E is a point of K-order continuity.

We discuss a characterization of strict K-monotonicity and K-order continuity in sym-
metric spaces. We present a connection between strictK-monotonicity, K-order continuity
and the best dominated approximation problems with respect to the Hardy-Littlewood-
Pólya relation ≺. The above results are based on the paper [1].

References
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Cyclicity on weighted Hardy spaces and applications

Volodymyr Dilnyi

Cracow University of Technology, Poland

Let Hp
σ(C+), σ ≥ 0, 1 ≤ p < +∞, is the space of analytic functions in the half-plane

C+ = {z : Rez > 0} for which

||f || := sup
−π

2
<ϕ<π

2


+∞∫
0

|f(reiϕ)|pe−prσ| sinϕ|dr


1/p

< +∞.

For the case σ = 0 the space Hp
σ(C+) is the (classical) Hardy space.

A function G is called cyclic in Hp
σ(C+), p ≥ 1, if G ∈ Hp

σ(C+) and the system

{G(z)eτz : τ ≤ 0}
is complete in Hp

σ(C+).
Theorem. Let G ∈ H2

σ(C+), σ > 0, G 6≡ 0. Then G is cyclic in H2
σ(C+) if and only

if the function G is zero-free in C+, the singular boundary function of G is an identical
constant and

lim sup
x→+∞

(
ln |G(x)|

x
+

2σ

π
lnx

)
= +∞.

Also, we discus about applications in the signal theory, zeta function theory, convolution
equations and others.

E-mail: dilnyiv@gmail.com
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s-numbers of general diagonal operators.

Alicja Dota

Poznań University of Technology, Poland

During the last decade there has been a considerable interest in entropy and s-numbers
of Sobolev embeddings. This interest has its origin in applications to spectral theory of
(pseudo-)differential operators, via the famous Carl-Triebel or Pietscha-Weyla inequality.

Estimating entropy and s-numbers of function spaces embeddings is not an easy task.
The first step is usually using the technique of discretization by wavelet bases, atomic or
subatomic decompositions i.e., we can reduce the problem to the corresponding problem
for suitable sequence spaces. However the resulting sequence spaces, are still quite com-
plicated, often they are of mixed-norm type and/or involve weights. Therefore a further
reduction is necessary, which by factorization leads to diagonal operators in `p-spaces. In
most cases are known results for entropy numbers, however a problem optimal s-numbers
estimates for diagonal operator is still open.

E-mail: alicja.dota@put.poznan.pl
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Some properties of Riesz-Bessel transforms associated with the generalized
shift operator

Ismail Ekincioglu

Dumlupinar University, Turkey

In this talk, the higher order Riesz-Bessel transforms related to generalized shift opera-
tor is introduced. However, some properties of the generalized shift operator is examined.
Then the boundedness of higher order Riesz-Bessel transforms in weighted Lp,γ-spaces is
proved.
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Product Factorability of Bilinear Maps on Banach Function Spaces

Ezgi Erdoğan

Marmara University, Turkey

In this presentation, we consider the bilinear operators acting in pairs of Banach func-
tion spaces and we give a factorization theorem for these maps by a summability condition
associated to the product. Our main result establishes that if we consider bilinear maps
acting in Banach function spaces that have a factorization through pointwise product,
this factorization gives the class of symmetric bilinear operators, that coincide with the so
called zero product preserving operators –maps that are zero valued for couples of functions
whose pointwise product is zero–. In other words, for a bilinear map B : X(µ)×Y (µ)→ Z
the followings imply each other under some requirements

i. B factors through the pointwise product �
ii. The equality B(χA, χC) = B(χA∩C , χA∪C) is satisfied for every A,C ∈ Σ.

iii. f � g = 0 implies B(f, g) = 0 for all (f, g) ∈ X(µ)× Y (µ).

Lastly, we will apply these tools to provide new descriptions of some classes of bilinear
integral operators, and to obtain integral representations for abstract classes of bilinear
maps satisfying certain domination properties.

This is a joint work with Enrique A. Sánchez Pérez.
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Estimates of certain localization operators associated with the
Riemann-Liouville operator

Soroosh Mohammadi Farsani

Department of Mathematics, Koosha College of Applied Science and Technology, Tehran, Iran

In this work, criteria for the boundedness and compactness of a class of pseudo-
differential operators known as time-frequency localization operators are given.
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Some remarks on geometry of Orlicz-Lorentz spaces

Paweł Foralewski

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87,

61-614 Poznań, Poland

In this talk some new results concerning geometry of Orlicz-Lorentz spaces will be
given.
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Some properties in Banach lattices defined by classes of linear operators

Jan Fourie

North-West University, South Africa

Classical properties in Banach spaces and Banach lattices, such as the Dunford-Pettis
property, DP ∗-property, Gelfand-Phillips property, Schur property, etc. are sometimes
characterized in terms of certain classes of bounded linear operators. In recent years
several variants of these properties (mostly, introducing weaker versions thereof), such as
p-Dunford-Pettis, DP ∗ of order p, p-Schur properties, etc. have been considered. Classes
of operators, such as the p-convergent operators, weak∗ p-convergent operators, p-limited
and sequentially limited operators, play important roles in this study. We discuss some
results concerning these operators and their applications to the geometrical properties
in Banach spaces and Banach lattices, primarily based on the papers mentioned in the
references below.
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The universal Banach space with a K-suppression unconditional basis

Joanna Garbulińska-Węgrzyn

Jan Kochanowski University, Kielce, Poland

We apply the categorical method of Fräissé limits for constructing a universal space UK
in the class of Banach spaces with a normalized K-suppression unconditional Schauder
basis. The universal space constructed by this method has a nice property of extension
of almost isometries, which is better than just the standard universality, established in
the papers of Pełczyński and Schechtman (who gave a short alternative construction of
universal space for class of Banach spaces with an unconditional bases). We also prove
that the universal space UK is isomorphic to the complementably universal space IU for
Banach spaces with unconditional basis, which was constructed by Pełczyński.
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On Mazur’s property of Banach spaces

Hossein Hosseini Giv

University of Sistan and Baluchestan, Zahedan, Iran

Weak compactness of the closed unit ball of a Banach space is a necessary and sufficient
condition for its reflexivity. This statement relates reflexivity, which is a Banach space
property defined using a space and its bidual, to compactness, which concerns a Tychonoff
space and its Stone–Čech compactification. This motivates us to seek for Banach space
arguments in which the bidual is used essentially, and then try to pose similar topological
arguments with bidual replaced by the Stone–Čech compactification. In this talk, we
discuss a result which asserts that when a Banach space satisfies Mazur’s property, its
closed unit ball equipped with the weak topology satisfies a similar topological property.

E-mail: hossein.giv@gmail.com, giv@math.usb.ac.ir
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On Regular Operators on Banach Lattices

Omer Gok

Yildiz Technical University, Istanbul, Turkey

Let X and Y be Banach lattices. An operator T : X → Y is called regular if it
is difference of two positive operators. Lr(X,Y ) denotes the vector space of all regular
operators from X into Y . An operator T : X → Y is called M -weakly compact operator
if for every disjoint bounded sequence (xn) in X, we have limn ‖Txn‖ = 0.W r

M (X,Y )
denotes the regular M -weakly compact operators from X into Y .An operator T : X → Y
is called L-weakly compact if for every disjoint sequence (yn) in the solid hull of T (ball(X)),
limn ‖yn‖ = 0. By W r

L(X,Y ) , we denote the set of all regular L-weakly compact operators
from X into Y . A Banach lattice X is a KB-space if and only if every increasing norm
bounded sequence (xn) in X converges. A Banach lattice X has b-property if and only if
X has an order continuous norm and KB-space. This presentation is devoted to the study
of regular operators, M -weakly compact operators and L-weakly compact operators on
Banach lattices. In particular, we show that Y has a b-property if and only if Lr(X,Y )
has b-property. Also, W r

M (X,Y ) is a KB-space if and only if Y is a KB-space.
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Singularity analysis of harmonic Bergman kernels

Jiř́ı Jahn

Silesian University in Opava, Mathematics Institute in Opava, Czech Republic

It is known (see [4], [1]) that for the Bergman kernel B(x, y) of a smoothly bounded
strictly pseudoconvex domain Ω ⊂ Cn there exist functions a, b ∈ C∞(Ω × Ω) such that
for every x, y ∈ Ω

B(x, y) =
a(x, y)

ρ(x, y)n+1
+ b(x, y) log ρ(x, y),

where ρ(x, y) ∈ C∞(Ω × Ω) is such that ∂ρ(x, y)/∂y and ∂ρ(x, y)/∂x vanish to infinite
order and ρ(x, x) =: ρ(x) is a defining function for Ω.

In [3] an analogous result is proved in the context of harmonic (instead of holomorphic)
Bergman kernels using the calculus of boundary pseudodifferential operators due to L.
Boutet de Monvel.

In the talk we discuss an alternative route to the results mentioned above using the
theory of holonomic systems of (pseudo)differential equations as exemplified in [5] and [2].
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Some fractional integral transforms for functions and dirtributions

Pankaj Jain

South Asian University, New Delhi, India

In this talk, we shall discuss fractional Fourier transform (FFT), fractional sine trans-
form (FST) and fractional cosine transform (FCT). These transforms will be discussed
for functions as well as for distributions. Several properties including the differentiation
properties of these transforms will be discussed. Also, it is intended to provide Lp-Lq

inequality involving generalized convolution related to FFT.

E-mail: pankaj.jain@sau.ac.in
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Uniform rotundity and uniform rotundity in every direction of Orlicz
function spaces equipped with the p-Amemiya norm

Radosław Kaczmarek

Adam Mickiewicz University in Poznań, Poland

Some results on uniform rotundity and uniform rotundity in every direction of Orlicz
function spaces equipped with the p-Amemiya norm (1 < p < ∞) will be presented.
Recall that these properties are strongly related with the fixed point theory as well as the
approximation theory.

E-mail: radekk@amu.edu.pl
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The Brown-Halmos Theorem for a Pair of Abstract Hardy Spaces

Oleksiy Karlovych

Universidade Nova de Lisboa, Portugal

Let H[X] and H[Y ] be abstract Hardy spaces built upon Banach function spaces X
and Y over the unit circle T. We prove an analogue of the Brown-Halmos theorem for
Toeplitz operators Ta acting from H[X] to H[Y ] under the only assumption that the space
X is separable and the Riesz projection P is bounded on the space Y . In particular, we
show that ‖a‖M(X,Y ) ≤ ‖Ta‖B(H[X],H[Y ]) ≤ ‖P‖B(Y )‖a‖M(X,Y ), where M(X,Y ) is the
space of all pointwise multipliers from X to Y . We specify our results to the case of
variable Lebesgue spaces X = Lp(·) and Y = Lq(·) and to the case of Lorentz spaces
X = Y = Lp,q(w), 1 < p <∞, 1 ≤ q <∞ with Muckenhoupt weights w ∈ Ap(T). This is
a joint work with Eugene Shargorodsky (King’s College London, UK).

E-mail: oyk@fct.unl.pt
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Function spaces with variable exponents

Henning Kempka

University of applied Sciences Jena, Jena, Germany

We introduce Function spaces of Besov- and Triebel-Lizorkin type with all indicees
variable. In these spaces not only the smoothness parameter s(·) but also the integrability
p(·) as well as the fine index q(·) depend on the space variable x ∈ Rn.
We present some general results on the variable scales and talk about characterizations
with non-smooth atoms, which hold in general for these spaces and provide easy proofs for
pointwise multiplier assertions and for intrinsic characterizations on Lipschitz domains.
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Maximal function characterizations for Hardy spaces associated to the
Laplace-Bessel operator

Cansu Keskin

Dumlupinar University, Turkey

In the classical case, the Hardy space can be also defined either through the bounded-
ness of the maximal operator of the Poisson semigroup or via an atomic decomposition.
In this talk, firstly, we introduce the maximal functions associated with the Laplace-
Bessel differential operator ∆ν , (ν > 0). This differential operator is closely connected
with the generalized shift operator T y. Then, we give the definition of the Hardy spaces
Hp

∆ν
related to the Laplace-Bessel differential operator defined on Rn+. Finally, we give

a characterization of Hp
∆ν

(Rn+) via using the radial maximal function, the nontangential
maximal function and the grand maximal function. For p > 1, we demonstrate some
relations among Lpν Lebesgue space and Hp

∆ν
Hardy spaces involving the Laplace-Bessel

operator.
This is a joint work with I. Ekincioglu and V. S. Guliyev.
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Discrete Morrey spaces and their inclusion properties

Eder Kikianty

University of Pretoria, South Africa

Many operators that are initially studied on Lebesgue spaces Lp(Rd) have discrete
analogues on `p(Z) spaces. Some of these operators have been studied on Morrey spaces
Mp

q(Rd). In this talk, I will introduce the discrete analogues of Morrey spaces and their
generalisations. We provide necessary and sufficient conditions for the inclusion prop-
erty among these spaces through an estimate for the characteristic sequences. This is a
joint work with H. Gunawan (Institut Teknologi Bandung, Indonesia) and Christopher
Schwanke (North-West University, South Africa).
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On approximation processes in Banach spaces defined by a cosine operator
function

Andi Kivinukk
(joint work with Anna Saksa)

Tallinn University, Estonia

In our presentation we introduce the Blackman- and Rogosinski-type approximation
processes in abstract Banach space setting. The historical roots of these processes go
back to W. W. Rogosinski in 1926 ([2]). The given definitions use a cosine operator
functions concept ([1]). We prove that in presented setting the Blackman- and Rogosinski-
type operators possess the order of approximation, which coincide with results known in
trigonometric approximation. Also applications for the different type of approximations
will be given.
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Order continuity in abstract Cesaro spaces

Tomasz Kiwerski

Poznań University of Technology, Poznań, Poland

For a Banach ideal space X the abstract Cesàro space CX is the space of all functions
f such that C|f | ∈ X, equipped with the norm ‖f‖CX = ‖C|f |‖X , where C denotes the
Cesàro operator

C : f 7→ Cf(x) :=
1

x

∫ x

0

f(t)dt.

Here we will focus on considering the abstract Cesàro spaces CX for those function
spaces X which are symmetric.

We study the local structure of this spaces in the terms of order continuity We will
present a complete characterisation of points of order continuity in abstract Cesàro spaces
CX. The main result says that X is order continuous if and only if CX is, under assump-
tion that the Cesàro operator is bounded on X.

The talk is based on a joint paper with Jakub Tomaszewski (Poznań University of
Technology).
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Mean value property in metric measure space

Antoni Kijowski

Institute of Mathematics of the Polish Academy of Sciences, Poland

We study functions possessing the mean value property in metric measure spaces, [1, 4].
We treat them as a natural counterpart to harmonic functions in this setting. Therefore we
examine their properties such as the maximum principle, the Harnack inequality, Lipschitz
and Sobolev regularity. Finally, we state necessary and sufficient conditions for function
to attain the mean value property expressed via system of PDEs, [3, 5, 6].
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Symmetrization, factorization and arithmetic of quasi-Banach function spaces

Paweł Kolwicz

Poznań University of Technology, Poland

We investigate relations between symmetrizations of quasi-Banach function spaces and
constructions such as Calderón-Lozanovskĭı spaces, pointwise product spaces and point-
wise multipliers. A quasi-normed or normed space E = (E, ‖ · ‖E) is said to be a quasi-
normed ideal (function) space or normed ideal (function) space on I, where I = (0, 1) or
I = (0,∞) with the Lebesgue measure m, if E is a linear subspace of L0(I) and satisfies the
so-called ideal property, which means that if y ∈ E, x ∈ L0 and |x(t)| ≤ |y(t)| for almost
all t ∈ I, then x ∈ E and ‖x‖E ≤ ‖y‖E . If, in addition, E is a complete space, then we
say that E is a quasi-Banach ideal space or a Banach ideal space (a quasi-Banach function
space or a Banach function space), respectively. Let E = (E, ‖ · ‖E) be a quasi-normed
ideal space on I. The symmetrization E(∗) of E is defined as

E(∗) = {x ∈ L0(I) : x∗ ∈ E}

with the functional ‖x‖E(∗) = ‖x∗‖E . For two quasi-normed ideal spaces E,F on I the
product space E � F is

E � F = {u ∈ L0(I) : u = x · y for some x ∈ E and y ∈ F},

and for u ∈ E � F we put

‖u‖E�F = inf{‖x‖E‖y‖F : u = x · y, x ∈ E, y ∈ F}.

The space of (pointwise) multipliers M(E,F ) is defined as

M(E,F ) = {x ∈ L0 : xy ∈ F for each y ∈ E}

with the operator (quasi-)norm

‖x‖M(E,F ) = sup
‖y‖E=1

‖xy‖F .

We show that under reasonable assumptions the symmetrization commutes with these
operations, that is the following equalities are true

(E � F )(∗) = E(∗) � F (∗),

(E′)(∗) = (E(∗))′and

M(E,F )(∗) = M(E(∗), F (∗))

We determine also the spaces of pointwise multipliers between Lorentz spaces. Finally,
the above results will be used in proofs of some factorization results. Developed methods
may be regarded as an arithmetic of quasi-Banach function spaces.

The talk is supported by the Ministry of Science and Higher Education of Poland, grant
number 04/43/DSPB/0094 and it is based on the papers
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Local uniform non-squareness of the Orlicz-Lorentz function spaces

Joanna Kończak

Adam Mickiewicz University in Poznań, Poland

A Banach space (X, ‖ · ‖) is said to be locally uniformly non-square if for any x ∈ S(X)
(the unit sphere of X) there exists δ = δ(x) ∈ (0, 1) such that min(‖x−y

2
‖, ‖x+y

2
‖) < 1− δ

for any y ∈ B(X) (the unit ball of X). We will present some results on the local uniform
non-squareness of the Orlicz-Lorentz spaces.
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Weak Derivatives and Sobolev spaces on LCA Groups

Tomasz Kostrzewa

Warsaw University of Technology, Poland

We study Sobolev spaces on LCA groups defined via the Fourier transform [2, 3, 4, 5].
We show that there is an adequate generalisation of differentiation which can be used in
theory of Sobolev spaces on LCA groups and we call it an α-weak derivative, where α is a
multi-index. Using α-weak derivatives we introduce another definition of Sobolev spaces
analogous to the one known from classical analysis. We prove that both the definitions
of the Fourier-Sobolev space and the weak derivatives Sobolev space are equivalent under
some mild conditions [6].
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Minimal projection onto certain subspace of Lp(X × Y × Z)

Michal Kozdęba

Jagiellonian University, Poland

Let X,Y, Z be Banach spaces. We show a formula for a minimal projection from
Lp(X×Y ×Z) onto Lp(X×Y ) +Lp(X×Z) +Lp(Y ×Z) and its generalization for space
Lp(X1 ×X2 × . . .×Xn). It is an extension of a result of Cheney and Light who showed
a formula for a minimal projection from Lp(X × Y ) onto Lp(X) + Lp(Y ).
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Weighted Lpconjecture and compactness in Lpspaces

Mateusz Krukowski
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The first part of the talk focuses on the weighted Lp-conjecture. A brief revision of
spectral theory for commutative Banach algebras enables us to prove the conjecture for
locally compact abelian groups. This is an alternative approach to the one known in the
literature. Subsequently, the discussion shifts to nilpotent, locally compact groups with
the climax being the proof of the weighted Lp-conjecture for these groups.

The second part of the talk begins with an investigation of the Arzelà-Ascoli’s theorem
and its intricate relationship with the Banach-Alaoglus theorem. Consequently, we put
forward the most natural proof (in author’s opinion) of the Fréchet-Kolmogorov-Riesz-
Weil’s theorem for locally compact groups.
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The approximation property for spaces of weighted differentiable functions

Karsten Kruse

Hamburg University of Technology, Germany

For 0 ≤ k ≤ ∞ and a family Vk :=
(
(νj,l,β)β∈Nd0 ,|β|≤l

)
j∈N,0≤l≤k of weights on an open

set Ω ⊂ Rd we study the space of weighted continuous resp. k-times continuously partially
differentiable functions with values in a locally convex (Hausdorff) space (E, (pα)α∈A) over
a field K given by

CVk(Ω, E) := {f ∈ Ck(Ω, E) | ∀ j ∈ N, l ∈ N0, 0 ≤ l ≤ k, α ∈ A : |f |j,l,α <∞},
where

|f |j,l,α := sup
z∈Ω

β∈Nd0 ,|β|≤l

pα
(
∂βf(z)

)
νj,l,β(z),

and its topological subspace CVk0(Ω, E) consisting of the functions that vanish with all
their derivatives when weighted at infinity.
We show that CVk0(Ω, E) is isomorphic to the ε-product of L. Schwartz and to the com-
pletion of the injective tensor product of CVk0(Ω) := CVk0(Ω,K) and E, i.e. CVk0(Ω, E) ∼=
CVk0(Ω)εE ∼= CVk0(Ω)⊗̂εE, if E is complete and the family of weights Vk fulfills some weak
assumptions, which implies that CVk0(Ω) has the approximation property.
The proof combines the ideas for the case k = 0 given in [1, 5.5 Theorem] and for the
special case Ck(Ω, E) with the topology of uniform convergence of all partial derivatives
on compact subsets of Ω from [2, Theorem 44.1].
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On some generalization of Cesàro and Copson spaces

Damian Kubiak

Tennessee Technological University, USA

The aim of this project is to define and study basic properties of spaces which generalize
the classical Cesàro and Copson spaces on R to spaces over wider class of measure spaces.

E-mail: dkubiak@tntech.edu
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Uniform convergence of trigonometric series

Mateusz Kubiak

University of Zielona Góra, Poland

It is well-known that there is a great number of interesting results in Fourier analysis
established by assuming monotonicity of coefficients. The following classical convergence
result can be found in many monographs (see [1] and [4], for example).

Theorem. Suppose that bn ≥ bn+1 and bn −→ 0. Then a necessary and sufficient
condition for the uniform convergence of the series

∞∑
n=1

bn sinnk

is nbn −→ 0.

This result has been generalized by weakening the monotone condition of the coeffi-
cient sequences(for example in [3] and [4]). In this talk we introduce a new class of se-
quences called GM(β, r, p, q), which is the generalization of a class considered by B. Szal
in [2]. Moreover, we obtain sufficient and necessary conditions for uniform convergence of
trigonometric series with (β, r, p, q) – general monotone coefficients.

The talk is based on the joint work with B. Szal.
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Effective energy integral functionals for thin films on curl-free vector fields in
the Orlicz-Sobolev space setting

Włodzimierz Laskowski

West Pomeranian University of Technology, Szczecin

We consider an elastic thin film as a bounded open subset ω ⊂ R2 with Lipschitz
boundary. The set Ωε := ω × (− ε

2
, ε

2
) ⊂ R3 for a small thickness ε is considered as

an elastic cylinder approximate to the film ω. The variational integral functional (the
re-scaled kinetic energy of the elastic cylinder Ωε) is defined by

(4) Gε(H) :=

{ 1
ε

∫
Ωε
W (H(x))dx

+∞
if H ∈ Vε
otherwise,

where
Vε := {H ∈ LM (Ωε;R3×3) : curl H = 0 (distributionally) }.

The effective energy functional defined on the Orlicz-Sobolev space W 1,M over ω is
obtained by Γ-convergence and 3D-2D dimension reduction techniques in the case when
the energy density function is cross-quasiconvex. In the case when the energy density
function is not cross-quasiconvex we obtained both upper and lower bounds for the Γ-
limit.

These results are proved in the case when the energy density function W has the growth
prescribed by an Orlicz convex function M . Here M,M∗ are assumed to be non-power-
growth-type and to satisfy the condition ∆glob

2 (that imply the reflexivity of Orlicz and
Orlicz-Sobolev spaces generated by M), where M∗ denotes the complementary (conjugate)
Orlicz N -function of M .

This is a joint work with Hong Thai Nguyen from the University of Szczecin.

E-mail: klesnik@vp.pl
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Dimension dependence of factorization problems: one- and two-parameter
Hardy spaces

Richard Lechner

Johannes Kepler University Linz, Linz, Austria

We consider the following quantitative factorization problem: We want to factor the
identity operator on an n-dimensional (one- or two-parameter) Hardy space through any
operator on an N = N(n) dimensional (one- or two-parameter) Hardy space with large
diagonal. We improve the best previously known super-exponential estimates for N by
showing polynomial estimates.
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Basic properties of Toeplitz and Hankel operators in non-algebraic setting

Karol Leśnik

Poznań University of Technology, Poland

The theory of Toeplitz and Hankel operators is widely investigated and well developed,
but mainly in the algebraic setting. In contrast to this, we are interested in a non-algebraic
situation, i.e. when these operators act between distinct Hardy spaces. We will present
basic properties of such operators and explain how they are related with the problem of
factorization of functions and with properties of spaces of pointwise multipliers.

E-mail: klesnik@vp.pl
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A note in approximative compactness and midpoint locally k-uniform
rotundity in Banach spaces

Chunyan Liu

Shanghai University of Engineering Science, Shanghai, China

In this talk, we prove the following results:
(1) A Banach space X is weak midpoint locally k-uniformly rotund if and only if every

closed ball of X is an approximatively weakly compact k-Chebyshev set.
(2) A Banach space X is midpoint locally k-uniformly rotund if and only if every closed

ball of X is an approximatively compact k-Chebyshev set.
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Pointwise (H,Φ) strong approximation by Fourier series of integrable
functions

Włodzimierz Łenski

University of Zielona Góra, Poland

We will present estimations of the generalized strong mean (H,Φ) as an approximation
version of the Totik type generalization of the results of J. Marcinkiewicz and A. Zygmund
and the classical result of G. H. Hardy and J. E. Littlewood on strong summability of
Fourier series of functions from L1 and from LΨ, respectively. As a measures of such
approximations we will use the functions constructed, by function Ψ complementary to
Φ, on the base of definition of the Gabisonia points GΨ and the Lebesgue points LΨ.

E-mail: W.Lenski@wmie.uz.zgora.pl
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Generalized fractional integrals and central Campanato spaces

Katsuo Matsuoka

College of Economics, Nihon University, Japan

For 0 < α < n, d ∈ N ∪ {0} and f ∈ L1
loc(Rn), let Iα be a fractional integral, i.e.,

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α dy,

and Ĩα,d be a generalized fractional integral (of order α), i.e.,

Ĩα,d f(x) =

∫
Rn
f(y)

Kα(x− y)−

 ∑
{l:|l|≤d}

xl

l!
(DlKα)(−y)

 (1− χQ1(y))

 dy,

where Kα(x) =
1

|x|n−α , D
l is the partial derivative of order l = (l1, l2, · · · , ln), i.e.,

Dl = (∂/∂x1)l1(∂/∂x2)l2 · · · (∂/∂xn)ln , and χQ1 is the characteristic function of Q1, and
we put

Ĩα = Ĩα,0,

which is a modified fractional integral of Iα.
Then, for 0 < α < n and 1 ≤ p <∞, the following are known:

• when −n/p ≤ λ < −α,
Iα is well-defined and bounded for Bp,λ(Rn);

• when −n/p ≤ λ < 1− α,
Ĩα is well-defined and bounded for CMOp,λ(Rn).

Here, for 1 ≤ p < ∞ and −n/p ≤ λ < ∞, Bp,λ(Rn) is a (non-homogeneous) central
Morrey space and CMOp,λ(Rn) is a (non-homogeneous) λ-central mean oscillation (λ-
CMO) space, i.e.,

CMOp,λ(Rn) = {f ∈ Lploc(R
n) : ‖f‖CMOp,λ <∞},

where

‖f‖CMOp,λ = sup
r≥1

1

rλ

(
1

|Qr|

∫
Qr

|f(y)− fQr |
p dy

)1/p

and fQr = 1
|Qr|

∫
Qr
f(y) dy.

In this talk, for the whole of λ such that −n/p ≤ λ < ∞, we will extend the results
of boundedness of Ĩα for CMOp,λ(Rn), i.e., for −n/p ≤ λ < d + 1 − α, we will show the
boundedness of Ĩα,d for CMOp,λ(Rn). In order to do this, we use the following function
spaces:

• (non-homogeneous) central Campanato space Λ
(d)
p,λ(Rn);

• generalized σ-Lipschitz space Lip
(d)
β,σ(Rn).
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Note : For r > 0, Qr = {y ∈ Rn : |y| < r} or Qr = {y = (y1, y2, · · · , yn) ∈ Rn :
max1≤i≤n |yi| < r}.

E-mail: katsu.m@nihon-u.ac.jp
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On monotonic functions from [0, 1] into Banach spaces

Artur Michalak

Adam Mickiewicz University, Poznań, Poland

For a function f from the unit interval [0, 1] into a Banach space X the oscillation
function df : [0, 1]→ R ∪ {∞} is defined by

df (t) = inf
δ>0

sup{‖f(s)− f(u)‖ : s, u ∈ [0, 1], |s− t| ≤ δ, |u− t| ≤ δ}.

For a function f : [0, 1]→ X and ε > 0 we put

D(f, ε) = {t ∈ [0, 1] : df (t) ≥ ε}.
We show that if there exists an increasing function f from [0, 1] into a real Banach lattice X
such that for some ε > 0 the set D(f, ε) is infinite, then X contains a subspace isomorphic
to the space C(D(f, ε)) of all real continuous functions on D(f, ε).
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Selected properties of complex symmetric operators

Paweł Mleczko
Paweł Mleczko

Adam Mickiewicz University in Poznań, Poland

In the course of a talk I will discuss interpolation properties of complex symmetric
operators on Hilbert spaces and show applications to the study of Toeplitz operators on
weighted Hardy–Hilbert spaces of analytic functions on the unit disc. The talk is based
on a joint work with Radosław Szwedek from Adam Mickiewicz University in Poznań.

E-mail: pml@amu.edu.pl
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Generalized maximal functions in Lorentz spaces

Rza Mustafayev
(joint work with Nevin Bilgiçli)

Department of Mathematics, Faculty of Science, Karamanoglu Mehmetbey University, Turkey

In this work we present the complete characterization of the boundedness of generalized
maximal operator

Mφ,Λα(b)f(x) := sup
Q3x

‖fχQ‖Λα(b)

φ(|Q|) (x ∈ Rn),

between the classical Lorentz spaces Λp(v) and Λq(w), for appropriate functions φ, where
0 < p, q, α < ∞, v, w, b are weights on (0,∞) such that 0 < B(t) :=

∫ t
0
b < ∞, t > 0,

B ∈ ∆2 and B(t)/tr is quasi-increasing for some 0 < r ≤ 1.

E-mail: rzamustafayev@gmail.com
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On intertwining non normal operators in a Banach space

Aissa Nasli Bakir

Hassiba Benbouali University of Chlef. Department of Mathematics, Faculty of Exact Sciences

and Informatics. Chlef 02000, Algeria

We present some recent results on an extension of the familiar theorem of Fuglede-
Putnam Theorem which asserts that each bounded linear operator which intertwines two
normal operators defined on a separable complex Hilbert space, then it intertwines their
adjoints too. The extension is studied on p-w-hyponormal with dominant operators. Other
related results are also shown.
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Well-posedness and Global Attractors for Viscous Fractional Cahn-Hilliard
Equations with Memory

Eylem Öztürk

Hacettepe University, Turkey

We examine a viscous Cahn-Hilliard phase-separation model with memory and where
the chemical potential possesses a nonlocal fractional Laplacian operator. The existence
of global weak solutions is proven using a Galerkin approximation scheme. A continuous
dependence estimate provides uniqueness of the weak solutions and also serves to define
a precompact pseudometric. This, in addition to the existence of a bounded absorbing
set, shows that the associated semigroup of solution operators admits a compact con-
nected global attractor in the weak energy phase space. The minimal assumptions on the
nonlinear potential allow for arbitrary polynomial growth.

Joint work with Joseph L. Shomberg.
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On Hardy type inequalities for weighted means

Paweł Pasteczka

Pedagogical University of Cracow, Poland

The aim of this talk is to establish weighted Hardy type inequality in a broad family
of means. In other words, for a fixed vector of weights (λn)∞n=1 and a weighted mean M,
we search for the smallest number C such that

∞∑
n=1

λnM
(
(x1, . . . , xn), (λ1, . . . , λn)

)
≤ C

∞∑
n=1

λnxn for all admissible x.

The main results provide a definite answer in the case whenM is monotone and satisfies
the weighted counterpart of the Kedlaya inequality. In particular, if M is symmetric,
Jensen-concave, and the sequence

(
λn

λ1+···+λn

)
is nonincreasing. In addition, it is proved

that if M is a symmetric and monotone mean, then the biggest possible weighted Hardy
constant is achieved if λ is the constant vector.
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Banach spaces with an unconditional basis and a small family of bounded
operators

Anna Pelczar-Barwacz

Jagiellonian University, Poland

I will discuss some results on Banach spaces with an unconditional basis and a small
family of isomorphisms, namely in which no two disjointly supported block spaces are
isomorphic (so-called tight by support spaces). In particular in such spaces no two iso-
morphic infinitely dimensional subspaces form a direct sum. I will present also the answer
to the question of W.T. Gowers, giving an example of a bounded operator on a subspace
of Gowers unconditional space (the canonical example of a tight by support Banach space)
which is not a strictly singular perturbation of a restriction of a diagonal operator.

The talk is based on a joint paper with Antonis Manoussakis.
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Interpolation of Morrey spaces for general parameters

Yoshihiro Sawano

Tokyo Metropolitan University Japan

Let 1 ≤ q ≤ p <∞. Define the Morrey norm ‖ ? ‖Mp
q

by

‖f‖Mp
q
≡ sup

{
|Q|

1
p
− 1
q ‖f‖Lq(Q) : Q is a cube in Rn

}
for a measurable function f . The Morrey space Mp

q(Rn) is the set of all the measurable
functions f for which ‖f‖Mp

q
is finite.

We are interested in the interpolation [Mp0
q0 ,M

p1
q1 ]θ of Morrey spaces. If

q0
p0

=
q1
p1

, then

Lemarié-Rieusset, Dachun Yang, Wen Yuan and Winfried Sickel obtained characteriza-
tions. Here we are interested in the case

q0
p0
6= q1
p1

. This is a joint work with Mieczysław

Mastyło.
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s-Numbers Ideals of Bilinear Operators

Eduardo Brandani da Silva

Maringa State University, Brazil

The theory of s-numbers of linear bounded operators among Banach spaces was in-
troduced and studied by Pietsch, see [2]. It plays a fundamental role in the theory of
operators and the local theory of Banach spaces and it is a powerful tool in the study of
eigenvalue distribution of operators in Banach spaces. For multilinear operators, a theory
of quasi s-numbers was developed in [1].

Operators ideals were introduced and extensively studied in [3]. This theory gave ori-
gin to several papers and books. Operator ideals are fundamental in Functional Analysis
and related areas. In this paper we introduce and study quasi s-numbers ideals of bilin-
ear operators among Banach spaces. The relationships among bilinear variants of linear
properties and analogous theorems which are well-known in the linear case, are stated and
proved.

It shall be noted that whereas the work is based on some ideas from the theory of s-
numbers ideals of bounded linear operators, some proofs may be extended from the linear
case to the bilinear operators and other require new ideas and methods.
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Extension of Sawyer’s duality to
grand Lebesgue spaces

Monika Singh

University of Delhi, India

For Lp-cone of non negative non increasing functions, the following is known as the
Sawyer’s duality principle:

Let 1 < p <∞, g be a non negative measurable function defined on (0,∞) and w be a
locally integrable weight. Then

sup
0≤f↓

∫∞
0
f(x)g(x)dx(∫∞

0
fp(x)w(x)dx

)1/p ≈
∫ ∞

0

(∫ ∞
x

g(t)∫ t
0
w(s)ds

dt

)p′
w(x)dx

1/p′

≈

(∫ ∞
0

(∫ x

0

g(t)dt

)p′
w(x)(∫ x

0
w(s)ds

)p′ dx
)1/p′

+

∫∞
0
g(x)dx(∫∞

0
w(x)dx

)1/p ,
where the symbol ≈ means that the ratio’s of left and right hand sides is bounded between
two positive constants depending only on p (and not on w or, g).

In this communication, our aim is to talk about the Sawyer’s duality in the framework of
grand Lebesgue spaces Lp). Further, its application, in the context of the boundedness of
classical Hardy operators on Lp) will be given.
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The Fourier Transform in Weighted Lebesgue and Lorentz Spaces

Gord Sinnamon

University of Western Ontario, Canada

I will discuss rearrangement techniques (a.k.a. interpolation techniques) in the study
of weighted inequalities for the Fourier Transform.
• A short survey of Lebesgue space results from 1987-2003 leads to a re-opening and
resolution of a case believed solved.
• Rearrangement techniques in the Lorentz space case reveal that the Fourier Transform
is a “worse case” operator of its boundedness type.
• Bootstrapping gives a method of applying the theory of positive (convolution) operators
to tailor rearrangement results to the Fourier Transform specifically.

Some results are joint work with Javad Rastegari.
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Dominated operators, absolutely summing operators
and the strict topology

Juliusz Stochmal

University of Zielona Góra, Poland

In the paper [3] Nowak has developed the theory of continuous linear operators on the
space Cb(X,E) of bounded continuous functions f : X → E, where X is a completely
regular Hausdorff space and E is a Banach space. Then the space Cb(X,E) is equipped
with the strict topology β. For X being a locally compact space β coincides with the
original strict topology that was introduced in 1958 by Buck [1]. The Riesz Representation
Theorem for continuous linear operators T : Cb(X,E) → F was obtained, where F is a
Banach space.

We present results concerning two classes of continuous linear operators on the space
Cb(X,E) , i.e., dominated and absolutely summing (see [2, §19], [5]). We characterize
dominated operators T : Cb(X,E) → F in terms of their representing measures m :
Bo→ L(E,F ′′). In particular, we derive an integral representation of dominated operators
T : Cb(X,E) → F with respect to the variation |m| of its representing measure m.
Moreover, we show that every absolutely summing operator on Cb(X,E) is dominated.

The talk is based on the paper [4].
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Restrictions of higher derivatives of the Fourier transform to the sphere

Dmitriy Stolyarov

St. Petersburg Department of Steklov Institute & St. Petersburg State University, Russia

Let Sd−1 be the unit sphere in Rd, d ≥ 2. The classical Tomas–Stein says that the
inequality ∥∥f̂ |Sd−1

∥∥
L2(Sd−1)

. ‖f‖Lp(Rd)

holds true iff p ∈ [1, 2d+2
d+3

]. Clearly, a similar estimate for a higher derivative of f̂ in terms
of ‖f‖Lp is impossible. We will discuss additional translation invariant conditions on f
that make such bounds possible.
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Uniform convergence of double sine series

Bogdan Szal

University of Zielona Góra, Poland

It is well known that in Fourier analysis there is a great number of interesting results es-
tablished by assuming monotonicity of coefficients. The following theorem gives necessary
and sufficient conditions for the uniform regular convergence of double sine series.

Theorem. ([5]) If {cjk}∞j,k=1 ⊂ R+ is a monotonically decreasing double sequence,
then the series

∞∑
j=1

∞∑
k=1

cjk sin jx sin ky

is uniformly regularly convergent in (x, y) if and only if

jkcjk → 0 as j + k →∞.
This result was generalized by Kórus and Móricz [2] and by Kórus [3] (and also by

Leindler [2]) by weakening the monotone condition of the coefficient sequences. Namely,
they have defined new classes of double sequences to obtain those generalizations. In this
talk we introduce new larger classes of double sequences and give sufficient conditions
for the uniformity of the regular convergence of double sine series with the coefficient
sequences belonging to these classes. We present also necessary conditions in the case
when the coefficients of double sine series are non-negative. Presented results come from
the paper [1].
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ODE-determined variable Lp spaces

Jarno Talponen

University of Eastern Finland, Joensuu, Finland

In this talk we recall the intuition and some basic facts of the recent ODE approach to
defining varying Lebesgue norms which was introduced by the speaker.

In the most recent paper in this line of inquiry we study decompositions of Nakano
type varying exponent Lebesgue norms and spaces. These function spaces are represented
here in a natural way as tractable varying `p type sums of projection bands. The main
results involve embedding the varying Lebesgue spaces, e.g. of Musielak-Orlicz-Nakano
type, to such sums, as well as the corresponding isomorphism constants. The main tool
applied here is an equivalent variable Lebesgue norm which is defined by an ODE natural
for the purpose. We also discuss the effect of transformations changing the ordering of
the unit interval on the values of the ODE-determined norm.
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A general theory of introducing norms in Orlicz spaces

Marek Wisła

Adam Mickiewicz University in Poznań, Poland

On the space of measurable functions W. Orlicz [3] and W. A. Luxemburg [2] introduced
norms that have been investigated till today. In the year 2000 Hudzik and Maligranda [1]
proposed to investigate the family of so-called p-Amemiya norms (1 ≤ p ≤ ∞) that cover
both classical norms: the Orlicz one (p = 1) and the Luxemburg one (p = ∞). During
the lecture it will be presented the general theory of constructing the norms on Orlicz
spaces by use of the composition of the modular IΦ(x) and the so-called outer function s.
This theory leads to a very wide class of norms and opens a brand new perspective in the
theory of Orlicz spaces. The lecture will end with a theorem establishing the Köthe dual
space to an Orlicz space equipped with the generalized norm.
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Strong unique minimal projections onto hyperplanes

Paweł Wójcik

Pedagogical University of Cracow, Polnad

We discuss some results concerning the problem of minimal projections and extensions.
Let X be a reflexive Banach space and let Y be a closed subspace of X of codimension
one. Let W be a finite-dimensional Banach space. We present a new sufficient condition
under which any minimal extension E ∈ L(X,W ) of an operator A ∈ L(Y,W ) is strongly
unique. In this report we show (in some circumstances) that a minimal projection from
X onto Y is a strongly unique minimal projection.
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Dugundji-type extensions of some classes of Baire-alpha functions

Marek Wójtowicz

Kazimierz Wielki University in Bydgoszcz, Poland

Let A be a nonempty subset of a Hausdorff space X, and let α be an ordinal number
< ω1. By Bα(X) we denote the space of all real functions X → R of Baire-class-α. F(A)
is the set of functions A → R with a property F such that F(A) is a linear subspace of
Bα(X).

We prove Borsuk-Dugundji-type extension theorems: we give an explicit form of a linear
extension operator T : F(A)→ F(X), where A is an Fσ and Gδ-subset of a normal space
X. Our results apply for F = to be piecewise continuous, and F = to be of Baire class
α. We show that T restricted to the subspace of bounded functions from F(A) (endowed
with the supremum norm) is a positive isometry. In particular, this solves partially an
extension problem set in 2005 by Kalenda and Spurný [1].

Moreover, by the use of an affine (yet, non-linear) extension operator Bα(A)→ Bα(X)
we give an explicit form of extensions preserving bounds of Baire-alpha functions.
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[1] O. F. K. Kalenda, J. Spurný, Extending Baire-one functions on topological spaces, Topology Appl. 149 (2005),

195–216.

E-mail: mwojt@ukw.edu.pl



97

On Dunford-Pettis-type functions

Elroy Zeekoei

North-West University, South Africa

The purpose of this talk is to introduce the notion of the so-called p-convergent func-
tions. We also introduce the notions of the Dunford-Pettis∗ property of order p and relate
it to the p-convergent operators and use these notions to characterise the p-convergent
functions.
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Fixed point theorems for (L)-type mappings in complete CAT(0) spaces

Jing Zhou

Shanghai University of Engineering Science, Shanghai, China

In this paper, fixed point properties for a class of more generalized nonexpansive map-
pings called (L)-type mappings are studied in geodesic spaces. Existence of fixed point
theorem, demiclosed principle, common fixed point theorem of single-valued and set-valued
are obtained in the third section. Moreover, in the last section, Delta-convergence and
strong convergence theorems for (L)-type mappings are proved. Our results extend the
fixed point results of Suzukis results in 2008 and Llorens-Fusters results in 2011.
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